
Fast Vertical Mining Using Diffsets

Mohammed J. Zaki ∗

Department of Computer Science
Rensselaer Polytechnic Institute, Troy, NY

zaki@cs.rpi.edu

Karam Gouda
Department of Mathematics

Faculty of Science, Benha, Egypt

karam g@hotmail.com

ABSTRACT
A number of vertical mining algorithms have been pro-
posed recently for association mining, which have shown
to be very effective and usually outperform horizontal
approaches. The main advantage of the vertical format
is support for fast frequency counting via intersection
operations on transaction ids (tids) and automatic prun-
ing of irrelevant data. The main problem with these
approaches is when intermediate results of vertical tid
lists become too large for memory, thus affecting the
algorithm scalability.

In this paper we present a novel vertical data repre-
sentation called Diffset, that only keeps track of differ-
ences in the tids of a candidate pattern from its generat-
ing frequent patterns. We show that diffsets drastically
cut down the size of memory required to store interme-
diate results. We show how diffsets, when incorporated
into previous vertical mining methods, increase the per-
formance significantly.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining

Keywords
Diffsets, Frequent Itemsets, Association Rule Mining

1. INTRODUCTION
Mining frequent patterns or itemsets is a fundamen-

tal and essential problem in many data mining appli-
cations. These applications include the discovery of
association rules, strong rules, correlations, sequential
rules, episodes, multi-dimensional patterns, and many

∗This work was supported in part by NSF CAREER
Award IIS-0092978, DOE Career Award DE-FG02-
02ER25538, and NSF grant EIA-0103708.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

other important discovery tasks [10]. The problem is
formulated as follows: Given a large data base of item
transactions, find all frequent itemsets, where a frequent
itemset is one that occurs in at least a user-specified
percentage of the data base.

Most of the proposed pattern-mining algorithms are
a variant of Apriori [1]. Apriori employs a bottom-up,
breadth-first search that enumerates every single fre-
quent itemset. The process starts by scanning all trans-
actions in the data base and computing the frequent
items at the bottom. Next, a set of potentially frequent
candidate 2-itemsets is formed from the frequent items.
Another database scan is made to obtain their supports.
The frequent 2-itemsets are retained for the next pass,
and the process is repeated until all frequent itemsets
have been enumerated. The Apriori heuristic achieves
good performance gain by (possibly significantly) reduc-
ing the size of candidate sets. Apriori uses the down-

ward closure property of itemset support to prune the
search space — the property that all subsets of a fre-
quent itemset must themselves be frequent. Thus only
the frequent k-itemsets are used to construct candidate
(k + 1)-itemsets. A pass over the database is made at
each level to find the frequent itemsets among the can-
didates.

Apriori-inspired algorithms [18, 14, 5, 13] show good
performance with sparse datasets such as market-basket
data, where the frequent patterns are very short. How-
ever, with dense datasets such as telecommunications
and census data, which have many, long frequent pat-
terns, the performance of these algorithms degrades in-
credibly. This degradation is due to the following rea-
sons: these algorithms perform as many passes over the
database as the length of the longest frequent pattern.
This incurs high I/O overhead for scanning large disk-
resident databases many times. Secondly, it is compu-
tationally expensive to check a large set of candidates
by pattern matching, which is specially true for mining
long patterns; a frequent pattern of length m implies
the presence of 2m − 2 additional frequent patterns as
well, each of which is explicitly examined by such algo-
rithms. When m is large, the frequent itemset mining
methods become CPU bound rather than I/O bound.

There has been recent interest in mining maximal fre-
quent patterns in “hard” dense databases, where it is
simply not feasible to mine all possible frequent item-
sets; in such datasets one typically finds an exponen-

tial number of frequent itemsets. For example, finding
long itemsets of length 30 or 40 is not uncommon [4].
Methods for finding the maximal elements include All-
MFS [9], which is a randomized algorithm to discover
maximal frequent itemsets. The Pincer-Search algo-
rithm [12] not only constructs the candidates in a bottom-
up manner like Apriori, but also starts a top-down search
at the same time. This can help in reducing the num-
ber of database scans. MaxMiner [4] is another algo-
rithm for finding the maximal elements. It uses effi-
cient pruning based on lookaheads to quickly narrow
the search. DepthProject [2] finds long itemsets using
a depth first search of a lexicographic tree of itemsets,
and uses a counting method based on transaction pro-
jections along its branches. Mafia [6] also uses several
pruning strategies, uses vertical bit-vector data format,
and compression and projection of bitmaps to improve
performance. GenMax [8] is a backtrack search based
algorithm for mining maximal frequent itemsets. Gen-
Max uses a number of optimizations to prune the search
space. It uses a novel technique called progressive fo-
cusing to perform maximality checking, and uses diff-
set propagation to perform fast frequency computation.
Finally, FPgrowth [11] uses the novel frequent pattern
tree (FP-tree) structure, which is a compressed repre-
sentation of all the transactions in the database. It uses
a recursive divide-and-conquer and database projection
approach to mine long patterns.

Another recent promising direction is to mine only
closed sets. It was shown in [15, 21] that it is not
necessary to mine all frequent itemsets, rather frequent
closed itemsets can be used to uniquely determine the
set of all frequent itemsets and their exact frequency.
Since the cardinality of closed sets is orders of magni-
tude smaller than all frequent sets, even dense domains
can be mined. The advantage of closed sets is that they
guarantee that the completeness property is preserved,
i.e., all valid association rules can be found. Note that
maximal sets do not have this property, since subset
counts are not available. Methods for mining closed
sets include the Apriori-based A-Close method [15], the
Closet algorithm based on FP-trees [16] and Charm [23].

Most of the previous work on association mining has
utilized the traditional horizontal transactional database
format. However, a number of vertical mining algo-
rithms have been proposed recently for association min-
ing [22, 20, 7, 23, 8, 6] (as well as other mining tasks
like classification [19]). In a vertical database each item
is associated with its corresponding tidset, the set of all
transactions (or tids) where it appears. Mining algo-
rithms using the vertical format have shown to be very
effective and usually outperform horizontal approaches.
This advantage stems from the fact that frequent pat-
terns can be counted via tidset intersections, instead of
using complex internal data structures (candidate gen-
eration and counting happens in a single step). The
horizontal approach on the other hand requires com-
plex hash/search trees. Tidsets offer natural pruning
of irrelevant transactions as a result of an intersection
(tids not relevant drop out). Furthermore, for databases
with long transactions it has been shown using a sim-

ple cost model, that the the vertical approach reduces
the number of I/O operations [7]. In a recent study
on the integration of database and mining, the Vertical
algorithm [17] was shown to be the best approach (bet-
ter than horizontal) when tightly integrating association
mining with database systems. Also, VIPER [20], which
uses compressed vertical bitmaps for association mining,
was shown to outperform (in some cases) even an op-
timal horizontal algorithm that had complete a priori

knowledge of all frequent itemsets, and only needed to
find their frequency. MAFIA [6] and SPAM [3] use ver-
tical bit-vectors for fast itemset and sequence mining
respectively.

Despite the many advantages of the vertical format,
when the tidset cardinality gets very large (e.g., for very
frequent items) the methods start to suffer, since the
intersection time starts to become inordinately large.
Furthermore, the size of intermediate tidsets generated
for frequent patterns can also become very large, re-
quiring data compression and writing of temporary re-
sults to disk. Thus (especially) in dense datasets, which
are characterized by high item frequency and many pat-
terns, the vertical approaches may quickly lose their ad-
vantages.

In this paper we present a detailed evaluation of a
novel vertical data representation called diffset, that
only keeps track of differences in the tids of a candidate
pattern from its generating frequent patterns. We show
that diffsets drastically cut down (by orders of magni-
tude) the size of memory required to store intermediate
results. The initial database stored in diffset format, in-
stead of tidsets can also reduce the total database size.
Thus even in dense domains the entire working set of
patterns of several vertical mining algorithms can fit
entirely in main-memory. Since the diffsets are a small
fraction of the size of tidsets, intersection operations
are performed extremely fast! We show how diffsets im-
prove by several orders of magnitude the running time
of vertical algorithms like Eclat [22] that mines all fre-
quent itemsets. These results have not been previously
published. We also compare our diffset-based methods
against Viper [20], and against FPGrowth [11]. While
we have previously used diffsets for closed [23] and max-
imal pattern mining [8], the detailed experimental eval-
uation of diffsets has not been presented before.

2. PROBLEM SETTING AND PRELIM-
INARIES

Association mining works as follows. Let I be a set
of items, and T a database of transactions, where each
transaction has a unique identifier (tid) and contains a
set of items. A set X ⊆ I is also called an itemset, and a
set Y ⊆ T is called a tidset. An itemset with k items is
called a k-itemset. For convenience we write an itemset
{A, C, W} as ACW , and a tidset {2, 4, 5} as 245. The
support of an itemset X, denoted σ(X), is the number
of transactions in which it occurs as a subset. An item-
set is frequent if its support is more than or equal to
a user-specified minimum support (min sup) value, i.e.,
if σ(X) ≥ min sup. As a running example, consider
the database shown in Figure 1. There are five dif-

ferent items, I = {A, B, C, D, E} and six transactions
T = {1, 2, 3, 4, 5, 6}. The table on the right shows all
19 frequent itemsets contained in at least three transac-
tions, i.e., min sup= 50%. A frequent itemset is called
maximal if it is not a subset of any other frequent item-
set. A frequent itemset X is called closed if there exists
no proper superset Y ⊃ X with σ(X) = σ(Y).

C D T

A C D T W

A C D W

A C T W

C D W

A C T W

A C D T W

6

5

3

4

2

1

DATABASE

MINIMUM SUPPORT = 50%

ALL FREQUENT ITEMSETS

C

W, CW

A, D, T, AC, AW
CD, CT, ACW

100% (6)

83% (5)

67% (4)

50% (3)
AT, DW, TW, ACT, ATW

ItemsetsSupport

CTW,CDW, ACTW

ItemsTranscation

Jane
Austen

Agatha
Christie

Sir Arthur
DISTINCT DATABASE ITEMS

Conan Doyle
P. G.

Wodehouse
Mark
Twain

Figure 1: Mining Frequent Itemsets

An association rule is an expression X
s,c
−→ Y , where

X and Y are itemsets. The rule’s support s is the
joint probability of a transaction containing both X
and Y , and is given as s = σ(XY). The confidence
c of the rule is the conditional probability that a trans-
action contains Y , given that it contains X, and is
given as c = σ(XY)/σ(Y). A rule is frequent if its
support is greater than min sup, and strong if its confi-
dence is more than a user-specified minimum confidence
(min conf).

Association mining involves generating all rules in the
database that have a support greater than min sup (the
rules are frequent) and that have a confidence greater
than min conf (the rules are strong). The main step
in this process is to find all frequent itemsets having
minimum support. The search space for enumeration
of all frequent itemsets is given by the powerset P(I)
which is exponential (2m) in m = |I|, the number of
items. Since rule generation is relatively easy, and less
I/O intensive than frequent itemset generation, we will
focus only on the first step in the rest of this paper.

2.1 Common Data Formats
Figure 2 also illustrates some of the common data for-

mats used in association mining. In the traditional hor-
izontal approach, each transaction has a tid along with
the itemset comprising the transaction. In contrast, the
vertical format maintains for each item its tidset, a set
of all tids where it occurs. Most of the past research
has utilized the traditional horizontal database format
for mining; some of these methods include Apriori [1],
that mines frequent itemsets, and MaxMiner [4] and
DepthProject [2] which mine maximal itemsets. No-
table exception to this trend are the approaches that

A

A

A

A C T W

C D W

C T W

C D W

C D T W

C D T

1

3

4

5

6

5

3

4

2

1

4

2

5

6 6

5

3

1 1

2

3

4

5

A C D T W

1 1 1

A C D T W

1

1

1

1

1

4

5

6

3

2 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

06

5

4

3

2

1

VERTICAL BITVECTORSVERTICAL TIDSETHORIZONTAL ITEMSET

Figure 2: Common Data Formats

use a vertical database format, which include Eclat [22],
Charm [21], and Partition [18]. Viper [20] and Mafia [6]
use compressed vertical bitvectors instead of tidsets.
Our main focus is to improve upon methods that utilize
the vertical format for mining frequent patterns.

3. EQUIVALENCE CLASSES AND DIFF-
SETS

Let I be the set of items. Define a function p : P(I)×
N 7→ P(I) where p(X, k) = X[1 : k], the k length prefix
of X. Define an equivalence relation θk on the subset
tree as follows: ∀X, Y ∈ P(I), X ≡θk

Y ⇔ p(X,k) =
p(Y, k). That is, two itemsets are in the same class if
they share a common k length prefix. θk is called a
prefix-based equivalence relation [22].

The search for frequent patterns takes place over the
subset (or itemset) search tree, as shown in Figure 3
(boxes indicate closed sets, circles the maximal sets and
the infrequent sets have been crossed out). Each node in
the subset search tree represents a prefix-based class. As
Figure 3 shows the root of the tree corresponds to the
class {A, C, D, T, W}, composed of the frequent items
in the database (note: all these items share the empty
prefix in common). The leftmost child of the root con-
sists of the class [A] of all subsets containing A as the
prefix, i.e. the set {AC, AD, AT, AW}, and so on. At
each node, the class is also called a combine-set. A class
represents items that the prefix can be extended with
to obtain a new frequent node. Clearly, no subtree of
an infrequent prefix has to be examined.

The power of the equivalence class approach is that it
breaks the original search space into independent sub-
problems. For the subtree rooted at A, one can treat
it as a completely new problem; one can enumerate the
patterns under it and simply prefix them with the item
A, and so on. The branches also need not be explored
in a lexicographic order; support-based ordering helps
to narrow down the search space and prune unnecessary
branches.

In the vertical mining approaches there is usually
no distinct candidate generation and support counting
phase like in Apriori. Rather, counting is simultaneous

{} {A, C, D, T, W}

A {C, D, T, W} C {D, T, W} D{T,W} T{W}

AC {D, T, W} AD {T, W} AT{W} AW CD {T,W} CT {W} CW

W

DT{W} DW TW

ACD{T,W}

ACDT{W}

ACDTW

ACDW

ACT{W}

ACTW

ACW ADT ADW

ADTW

ATW CDT{W}

CDTW

CDW CTW DTW

Figure 3: Subset Search Tree

CDW CTW

ACTW

1

3

5

3

4

5

1 1

3

5

1

3

5

2

4

5

1

3

5

6

5

4

2

5

4

3

2

1

3

4

5

1

3

4

5

1

3

4

5

1

6

5

4

2

5

4

3

2

1 1

3

5

2

4

5

A

1

2

3

4

5

6

3

5

6

1

C D T W

1

3

5

4

5 3

5

6

1 5

6

AC AD AT AW CD CT CW DT DW TW

ACT ACW ATW

Figure 4: Tidsets for Pattern Counting

with generation. For a given node or prefix class, one
performs intersections of the tidsets of all pairs of class
elements, and checks if min sup is met. Each resulting
frequent itemset is a class unto itself with its own el-
ements that will be expanded in the next step. That
is to say, for a given class of itemsets with prefix P ,
[P] = {X1, X2, ..., Xn}, one performs the intersection
of PXi with all PXj with j > i to obtain a new class
[PXi] with elements Xj where the itemset PXiXj is
frequent. For example, from [A] = {C, D, T, W}, we
obtain the classes [AC] = {D, T, W}, [AD] = {T, W},
and [AT] = {W} (an empty class like [AW] need not
be explored further).

Vertical methods like Eclat [22] and Viper [20] utilize
this independence of classes for frequent set enumer-
ation. Figure 4 shows how a typical vertical mining
process would proceed from one class to the next using
intersections of tidsets of frequent items. For example,

the tidsets of A (t(A) = 1345) and of D (t(D) = 2456)
can be intersected to get the tidset for AD (t(AD) = 45)
which is not frequent. As one can see in dense do-
mains the tidset size can become very large. Com-
bined with the fact that there are a huge number of
patterns that exist in dense datasets, we find that the
assumption that a sub-problem can be solved entirely in
main-memory can easily be violated in such dense do-
mains (particularly at low values of support). One way
to solve this problem is the approach used by Viper,
where they use compression of vertical bit-vectors to
selectively read/write tidsets from/to disk as the com-
putation progresses. Here we offer a fundamentally new
way of processing tidsets using the concept of “differ-
ences”.

3.1 Diffsets
Since each class is totally independent, in the sense

that it has a list of all possible itemsets, and their tid-
sets, that can be combined with each other to produce
all frequent patterns sharing a class prefix, our goal is
to leverage this property in an efficient manner.

Our novel and extremely powerful solution (as we
shall show experimentally) is to avoid storing the en-
tire tidset of each member of a class. Instead we will
keep track of only the differences in the tids between
each class member and the class prefix itemset. These
differences in tids are stored in what we call the diffset,
which is a difference of two tidsets (namely, the prefix
tidset and a class member’s tidset). Furthermore, these
differences are propagated all the way from a node to
its children starting from the root. The root node’s
members can themselves use full tidsets or differences
from the empty prefix (which by definition appears in
all tids).

d(PX)d(PY) d(PXY) PXY

t(P)

t(X)

t(Y)

Figure 5: Diffsets Illustration

More formally, consider a given class with prefix P .
Let t(X) denote the tidset of element X, and let d(X)
the diffset of X, with respect to a prefix tidset, which is
the current universe of tids. In normal vertical methods
one has available for a given class the tidset for the prefix
t(P) as well as the tidsets of all class members t(PXi).

Assume that PX and PY are any two class members of
P . By the definition of support it is true that t(PX) ⊆
t(P) and t(PY) ⊆ t(P). Furthermore, one obtains the
support of PXY by checking the cardinality of t(PX)∩
t(PY) = t(PXY).

Now suppose instead that we have available to us not
t(PX) but rather d(PX), which is given as t(P)− t(X),
i.e., the differences in the tids of X from P . Similarly,
we have available d(PY). The first thing to note is that
the support of an itemset is no longer the cardinality
of the diffset, but rather it must be stored separately
and is given as follows: σ(PX) = σ(P) − |d(PX)|. So,
given d(PX) and d(PY) how can we compute if PXY
is frequent?

We use the diffsets recursively as we mentioned above,
i.e., σ(PXY) = σ(PX)−|d(PXY)|. So we have to com-
pute d(PXY). By our definition d(PXY) = t(PX) −
t(PY). But we only have diffsets, and not tidsets as the
expression requires. This is easy to fix, since d(PXY) =
t(PX) − t(PY) = t(PX) − t(PY) + t(P) − t(P) =
(t(P) − t(PY)) − (t(P) − t(PX)) = d(PY) − d(PX).
In other words, instead of computing d(PXY) as a dif-
ference of tidsets t(PX)− t(PY), we compute it as the
difference of the diffsets d(PY)−d(PX). Figure 5 shows
the different regions for the tidsets and diffsets of a given
prefix class and any two of its members. The tidset of
P , the triangle marked t(P), is the universe of relevant
tids. The gray region denotes d(PX), while the region
with the solid black line denotes d(PY). Note also that
both t(PXY) and d(PXY) are subsets of the tidset of
the new prefix PX.

TIDSET database
DIFFSET database

CDW CTW

ACTW

4

4

6

6 6

6

5

4

2

5

4

3

2

1

3

4

5

1

3

1 1

3 4

2 2

4

6 6

2

6

1

3

2

4

6

A

A

1

2

3

4

5

6

3

5

6

1

C D T W

C D T W

AC AD AT AW CD CT CW DT DW TW

ACT ACW ATW

Figure 6: Diffsets for Pattern Counting

Example Consider Figure 6 showing how diffsets can
be used to enhance vertical mining methods. We can
choose to start with the original set of tidsets for the
frequent items, or we could convert from the tidset rep-
resentation to a diffset representation at the very begin-
ning. One can clearly observe that for dense datasets

like the one shown, a great reduction in the database size
is achieved using this transformation (which we confirm
on real datasets in the experiments below).

If we start with tidsets, then to compute the sup-
port of a 2-itemset like AD, we would find d(AD) =
t(A) − t(D) = 13 (we omit set notation when there is
no confusion). To find out if AD is frequent we check
σ(A) − |d(AD)| = 4 − 2 = 2, thus AD is not frequent.
If we had started with the diffsets, then we would have
d(AD) = d(D)−d(A) = 13−26 = 13, the same result as
before. Even this simple example illustrates the power
of diffsets. The tidset database has 23 entries in total,
while the diffset database has only 7 (3 times better). If
we look at the size of all results, we find that the tidset-
based approach takes up 76 tids in all, while the diffset
approach (with initial diffset data) stores only 22 tids.
If we compare by length, we find the average tidset size
for frequent 2-itemsets is 3.8, while the average diffset
size is 1. For 3-itemsets the tidset size is 3.2, but the
avg. diffset size is 0.6. Finally for 4-itemsets the tid-
set size is 3 and the diffset size is 0! The fact that the
database is smaller to start with and that the diffsets
shrink as longer itemsets are found, allows the diffset
based methods to become extremely scalable, and de-
liver orders of magnitude improvements over traditional
approaches.

3.2 dEclat: Diffset Based Mining

dEclat([P]):
for all Xi ∈ [P] do

for all Xj ∈ [P], with j > i do
R = Xi ∪ Xj ;
d(R) = d(Xj) − d(Xi);
if σ(R) ≥ min sup then

Ti = Ti ∪ {R}; //Ti initially empty
if Ti 6= ∅ then dEclat(Ti);

Figure 7: Pseudo-code for dEclat

To illustrate the power of diffset-based mining, we
have integrated diffsets with Eclat [24, 22], a state-of-
the-art vertical mining algorithms. Our enhancement is
called dEclat. We briefly discuss this algorithm below.

Figure 7 shows the pseudo-code for dEclat. Details on
some optimizations, especially for computing frequent
items and 2-itemsets have been omitted, which can be
found in [22].

dEclat performs a depth-first search of the subset tree.
Our experiments show that diffsets allow it to mine on
much lower supports than other methods like Apriori
and the base Eclat method. The input to the procedure
is a set of class members for a subtree rooted at P .
Frequent itemsets are generated by computing diffsets
for all distinct pairs of itemsets and checking the support
of the resulting itemset. A recursive procedure call is
made with those itemsets found to be frequent at the
current level. This process is repeated until all frequent
itemsets have been enumerated. In terms of memory
management it is easy to see that we need memory to
store intermediate diffsets for at most two consecutive
levels within a class. Once all the frequent itemsets for
the next level have been generated, the itemsets at the

0

20000

40000

60000

80000

100000

120000

2025303540455055606570

S
iz

e
 (

in
 B

y
te

s
)

Minimum Support (%)

chess

Original
Tidset
Diffset

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

102030405060708090100

S
iz

e
 (

in
 B

y
te

s
)

Minimum Support (%)

connect

Original
Tidset
Diffset

100000

200000

300000

400000

500000

600000

700000

800000

02468101214161820

S
iz

e
 (

in
 B

y
te

s
)

Minimum Support (%)

mushroom

Original
Tidset
Diffset

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

6065707580859095100

S
iz

e
 (

in
 B

y
te

s
)

Minimum Support (%)

pumsb

Original
Tidset
Diffset

0
500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06
4e+06

4.5e+06
5e+06

5.5e+06

5101520253035404550

S
iz

e
 (

in
 B

y
te

s
)

Minimum Support (%)

pumsb*

Original
Tidset
Diffset

0
1e+07
2e+07
3e+07
4e+07
5e+07
6e+07
7e+07
8e+07
9e+07

00.20.40.60.811.21.41.61.82

S
iz

e
 (

in
 B

y
te

s
)

Minimum Support (%)

T40I10D100K

Original
Tidset
Diffset

Figure 8: Size of Vertical Database: Tidset and Diffset

current level within a class can be deleted.

4. EXPERIMENTAL RESULTS
All experiments were performed on a 400MHz Pen-

tium PC with 256MB of memory, running RedHat Linux
6.0. Algorithms were coded in C++. Furthermore, the
times for all the vertical methods include all costs, in-
cluding the conversion of the original database from a
horizontal to a vertical format required for the vertical
algorithms. We chose several real and synthetic datasets
for testing the performance of algorithms. All datasets
except the PUMS (pumsb and pumsb*) sets, are taken
from the UC Irvine Machine Learning Database Reposi-
tory. The PUMS datasets contain census data. pumsb*
is the same as pumsb without items with 80% or more
support. The mushroom database contains characteris-
tics of various species of mushrooms. Finally the con-
nect and chess datasets are derived from their respec-
tive game steps. Typically, these real datasets are very
dense, i.e., they produce many long frequent itemsets
even for very high values of support.

We also chose a few synthetic datasets, which have
been used as benchmarks for testing previous associ-
ation mining algorithms. These datasets mimic the
transactions in a retailing environment. Usually the
synthetic datasets are sparser when compared to the
real sets.

Figure 9 shows the characteristics of the real and syn-
thetic datasets used in our evaluation. It shows the
number of items, the average transaction length and the
number of transactions in each database. As one can see

Database # Items Avg. Length # Records
chess 76 37 3,196
connect 130 43 67,557
mushroom 120 23 8,124
pumsb* 7117 50 49,046
pumsb 7117 74 49,046
T10I4D100K 1000 10 100,000
T40I10D100K 1000 40 100,000

Figure 9: Database Characteristics

the average transaction size for these databases is much
longer than conventionally used in previous literature.
We also include two sparse datasets (last two rows) to
study its performance on both dense and sparse data.

4.1 Diffsets vs. Tidsets
Our first experiment is to compare the benefits of diff-

sets versus tidsets in terms of the database sizes using
the two formats. We conduct experiment on several real
(usually dense) and synthetic (sparse) datasets (see Sec-
tion 4 for the dataset descriptions). In Figure 8 we plot
the size of the original vertical database, the size of the
database using tidsets of only the frequent items at a
given level of support, and finally the database size if
items were stored as diffsets. We see, for example on
the dense pumsb dataset, that the tidset database at
60% support is 104 times smaller than the full vertical
database; the diffset database is 106 times smaller! It
is 100 times smaller than the tidset database. For the
other dense datasets, connect and chess, the diffset for-
mat can be up to 100 times smaller depending on the

min sup value.
For the sparser pumsb* dataset we notice a more in-

teresting trend. The diffset database starts out smaller
than the tidset database, but quickly grows more than
even the full vertical database. For mushroom and other
other synthetic datasets (results shown only for T40I10-
D100K), we find that diffsets occupy (several magni-
tudes) more space than tidsets. We conclude that keep-
ing the original database in diffset format is clearly su-
perior if the database is dense, while the opposite is true
for sparse datasets. In general we can use as starting
point the smaller of the two formats depending on the
database characteristics.

Due to the recursive dependence of a tidset or diffset
on its parent equivalence class it is difficult to obtain
analytically an estimate of their relative sizes. For this
reason we conduct an experiment comparing the size of
diffsets versus tidsets at various stages during mining.
Figure 10 shows the average cardinality of the tidsets
and diffsets for frequent itemsets of various lengths on
different datasets, for a given minimum support. We
denote by db a run with tidset format and by Ddb a
run with the diffset format, for a given dataset db. We
assume that the original dataset is stored in tidset for-
mat, thus the average tidset length is the same for single
items in both runs. However, we find that while the tid-
set size remains more or less constant over the different
lengths, the diffset size reduces drastically.

For example, the average diffset size falls below 1 for
the last few lengths (over the length interval [11-16] for
chess, [9-12] for connect, [7-17] for mushroom, [8-15] for
pumsb*, 8 for pumsb, [9-11] for T10, [12-14] for T20).
The only exception is T40 where the diffset length is 5
for the longest patterns. However, over the same inter-
val range the avg. tidset size is 1682 for chess, 61325 for
connect, 495 for mushroom, 18200 for pumsb*, 44415 for
pumsb, 64 for T10, 182 for T20, and 728 for T40. Thus
for long patterns the avg. diffset size is several orders of
magnitude smaller than the corresponding avg. tidset
size (4 to 5 orders of magnitude smaller on dense sets,
and 2 to 3 orders of magnitude smaller on sparse sets).
We also show in Table 11 the average diffset and tidset
sizes across all lengths. We find that diffsets are smaller
by one to two orders of magnitude for both dense as
well as sparse datasets.

There is usually a cross-over point when a switch from
tidsets to diffsets will be of benefit. For dense datasets it
is better to start with the diffset format, while for sparse
data it is better to start with tidset format and switch
to diffsets in later stages, since diffsets on average are
orders of magnitude smaller than tidsets. In general, we
would like to know when it is beneficial to switch to the
diffset format from the tidset format. Since each class
is independent the decision can be made adaptively at
the class level.

Consider a given class with prefix P , and assume that
PX and PY are any two class members of P , with their
corresponding tidsets t(PX) and t(PY). Consider the
itemset PXY in a new class PX, which can either be
stored as a tidset t(PXY) or as a diffset d(PXY). We
define reduction ratio as r = t(PXY)/d(PXY). For

diffsets to be beneficial the reduction ratio should be at
least 1. That is r ≥ 1 or t(PXY)/d(PXY) ≥ 1. Substi-
tuting for d(PXY), we get t(PXY)/(t(PX)−t(PY)) ≥
1. Since t(PX) − t(PY) = t(PX) − t(PXY), we have
t(PXY)/(t(PX)− t(PXY)) ≥ 1. Dividing by t(PXY)
we get, 1/(t(PX)/t(PXY) − 1) ≥ 1. After simplifica-
tion we get t(PX)/t(PXY) ≤ 2. In other words it is
better to switch to the diffset format if the support of
PXY is at least half of PX. If we start with a tidset
database, empirically we found that for all real datasets
it was better to use diffsets from length 2 onward. On
the other hand, for the synthetic datasets we found that
the 2-itemsets have an average support value 10 times
smaller than the support of single items. Since this re-
sults in a reduction ratio less than 1, we found it better
to switch to diffsets starting at 3-itemsets.

4.1.1 Comparison with Compressed Bitvectors
Viper [20] proposed using compressed vertical bitvec-

tors instead of tidsets. Here we compare the bitvec-
tors against diffsets. The classical way of compressing
bitvectors is by using run-length encoding (RLE). It was
noted in [20] that RLE is not appropriate for association
mining, since it is not realistic to assume many consecu-
tive 1’s for a sparse dataset. If all 1’s occur in an isolated
manner, RLE outputs one word for the preceding 0 run
and one word for the 1 itself. This results in a database
that is double the size of a tidset database.

Viper uses a novel encoding scheme called Skinning.
The idea is to divide runs of 1’s and 0’s in groups of
size W1 and W0. Each full group occupies one bit set
to 1. The last partial group (R mod Wi, where R is the
run length) occupies lg Wi bits storing the partial count
of 1’s or 0’s. Finally, a field separator bit (0) is placed
between the full groups bits and the partial count field.
Since the length of the count field is fixed, we know
that we have to switch to 1’s or 0’s after having seen
the count field for a run of 0’s or 1’s, respectively. If
the minimum support is less than 50% the bitvectors
for (longer) itemsets will have more 0’s than 1’s, thus
it makes sense to use a large value for W0 and a small
value for W1. Viper uses W0 = 256 and W1 = 1.

Let N denote the number of transactions, n1 the
number of 1’s and n0 the number of 0’s in an item-
set’s bitvector. Assuming word length of 32 bits, a tid-
set takes 32n1 bits of storage. Assume (in the worst
case) that all 1’s are interspersed by exactly one 0,
with a trailing run of 0’s. In the skinning process each
1 leads to two bits of storage, one to indicate a full
group and another for the separator. For n1 1’s, we
get 2n1 bits of storage. For a compressed bitvector the
number of bits used for isolated 1’s is given as 2n1.
For the n1 isolated 0’s we need n1(1 + lg W0) = 9n1

bits. For the remaining n0 − n1 = (N − n1) − n1 =
N−2n1 0’s we need (N−2n1)(1/W0) = N/256−n1/128
bits. Since n1 ≥ N× min sup the total number of
bits for the compressed vector is given as the sum of
the number of bits required for 1’s and 0’s, given as
2n1 + 9n1 − n1/128 + N/256 = 1407n1/128 + N/256.
The benefit of skinning compared to tidset storage is
then given as Cw ≥ 32n1/(1407n1/128+N/256), where
Cw denotes worst case compression ratio, i.e., the ra-

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 5 10 15 20 25 30

A
v
e
ra

g
e
 S

iz
e
 (

N
u
m

b
e
r

o
f
T

id
s
)

Itemset Length

Real Datasets

chess(50%)
connect(90%)

mushroom(5%)
Dchess(50%)

Dconnect(90%)
Dmushroom(5%)

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16

A
v
e
ra

g
e
 S

iz
e
 (

N
u
m

b
e
r

o
f
T

id
s
)

Itemset Length

Real Datasets

pumsb*(35%)
pumsb(90%)

Dpumsb*(35%)
Dpumsb(90%)

0.1

1

10

100

1000

10000

0 5 10 15 20 25

A
v
e
ra

g
e
 S

iz
e
 (

N
u
m

b
e
r

o
f
T

id
s
)

Itemset Length

Sparse Datasets

t10(0.025%)
t20(0.1%)
t40(0.5%)

Dt10(0.025%)
Dt20(0.1%)
Dt40(0.5%)

Figure 10: Average Size per Iteration: Tidset and Diffset

Database min sup Max Length Avg. Diffset Size Avg. Tidset Size Reduction Ratio
chess 0.5% 16 26 1820 70
connect 90% 12 143 62204 435
mushroom 5% 17 60 622 10
pumsb* 35% 15 301 18977 63
pumsb 90% 8 330 45036 136
T10I4D100K 0.025% 11 14 86 6
T20I16D100K 0.1% 14 31 230 11
T40I10D100K 0.5% 18 96 755 8

Figure 11: Average Tidset and Diffsets Cardinality

0.1

1

10

100

1000

10000

30405060708090100

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

dEclat: Real Datasets

chess
Dchess
connect

Dconnect
pumsb

Dpumsb
1

10

100

1000

05101520253035404550

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

dEclat: Real Datasets

mush
Dmush
pumsb*

Dpumsb*

10

100

1000

0.20.40.60.811.21.41.61.82

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

dEclat: Synthetic Datasets

t10
Dt10

t40
Dt40

Figure 12: Improvements using Diffsets

tio of the storage required for the tidset divided by the
storage required for the compressed bitvector. After
substituting n1 ≥ N×min sup and simplifying, we get
Cw ≥ 1

0.34+ 1

8192×min sup
.

For support values less than 0.02% Cw is less than
1, which means that skinning causes expansion rather
than compression. The maximum value of Cw reaches
2.91 asymptotically. For min sup=0.1%, Cw = 2.14
Thus for reasonable support values the compression ra-
tio is expected to be between 2 and 3 compared to tid-
sets. Supposing we assume a best case scenario for
skinning, where all the n1 1’s come before the n0 0’s
(this is highly unlikely to happen). We would then
need n1 bits to represent the single run of 1’s, and
n0/W0 = n0/256 bits for the run of 0’s. The total
space is thus n1 + n0/256 = n1 + (N − n1)/256 =
255n1/256 + N/256. The best case compression ration

is given as Cb ≥ 32n1/(255n1/256+N/256). After sim-
plification this yields Cb ≥ 1

0.03+ 1

8192×min sup
, which

asymptotically reaches a value of 32. In the best case,
the compression ratio is 32, while in the worst case the
compression ratio is only 2 to 3. The skinning process
can thus provide at most 1 order of magnitude compres-
sion ratio over tidsets. However, as we have seen diffsets
provide anywhere from 2 to 5 orders of magnitude com-
pression over tidsets. The experimental and theoretical
results shown above clearly substantiate the power of
diffset based mining!

4.2 Frequent Pattern Mining
Figure 12 proves the advantage of diffsets over the

base method that use only tidsets. We give a thorough
sets of experiments spanning all the real and synthetic
datasets mentioned above, for various values of mini-

0.1

1

10

100

1000

10000

303540455055606570

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

chess

Apriori
Viper
Eclat

dEclat

1

10

100

1000

10000

100000

50556065707580859095100

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

connect

Apriori
Viper
Eclat

dEclat

1

10

100

1000

10000

2468101214161820

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

mushroom

Apriori
Viper
Eclat

dEclat

0.1

1

10

100

1000

7580859095100

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

pumsb

Apriori
Viper
Eclat

dEclat

10

100

0.020.040.060.080.10.120.140.16

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

T10

Apriori
Viper
Eclat

dEclat

10

100

1000

0.40.60.811.21.41.61.82

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

T40

Apriori
Viper
Eclat

dEclat

Figure 13: Comparative Performance: Apriori, Viper, Eclat, dEclat

 0

 20

 40

 60

 80

 100

 120

 140

 160

 40 45 50 55 60 65 70

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

chess

FPGrowth
dEclat

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 70 75 80 85 90

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

connect

FPGrowth
dEclat

 0

 10

 20

 30

 40

 50

 60

 4 6 8 10 12 14 16 18 20

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

mushroom

FPGrowth
dEclat

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 74 76 78 80 82 84 86 88 90

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

pumsb

FPGrowth
dEclat

 2

 4

 6

 8

 10

 12

 14

 0.04 0.06 0.08 0.1 0.12 0.14 0.16

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

T10

FPGrowth
dEclat

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.8 1 1.2 1.4 1.6 1.8 2

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

T40

FPGrowth
dEclat

Figure 14: Comparative Performance: FPGrowth, dEclat

mum support, and compare the diffset-based algorithms
against the base algorithm. We denote by db a run with
tidset format and by Ddb a run with the diffset for-

mat, for a given dataset db. We find that one the real
datasets, the diffset algorithms outperform tidset based
methods by several orders of magnitude. The benefits

on the synthetic datasets are only marginal, up to a
factor of 2 improvement.

In Figure 13 we compare horizontal and vertical algo-
rithms for mining the set of all frequent patterns. We
compare the new dEclat method against Eclat [22], the
classic Apriori [1] and recent Viper [20] algorithm. We
see the dEclat outperforms by orders of magnitude the
other algorithms. One observation that can be made
is that dEclat makes Eclat more scalable, allowing it
to enumerate frequent patterns even in dense datasets
for relatively low values of support. On dense datasets
Viper is better than Apriori at lower support values, but
Viper is uncompetitive with Eclat and dEclat.

Figure 14 compares dEclat with FPGrowth [11] 1.
The results are shown separately since the authors pro-
vided only a Windows executable. We tested them on
a 800 Mhz, 256MB memory, Pentium III processor run-
ning Win98 and cygwin. We observe that dEclat out-
performs FPGrowth by a factor of 2 for all datasets
except T10I4D100K which is very sparse and has only
a few long patterns. The time difference increases with
decreasing support.

4.3 Conclusions
In this paper we presented a detailed evaluation of

a novel vertical data representation called Diffset, that
only keeps track of differences in the tids of a candidate
pattern from its generating frequent patterns. We show
that diffsets drastically cut down the size of memory re-
quired to store intermediate results. We show how diff-
sets, when incorporated into a previous vertical mining
methods, increase the performance significantly.

5. REFERENCES
[1] R. Agrawal, et al. Fast discovery of association

rules. In U. Fayyad and et al (eds.), Advances in

Knowledge Discovery and Data Mining, AAAI
Press, 1996.

[2] Ramesh Agrawal, Charu Aggarwal, and V.V.V.
Prasad. Depth First Generation of Long Patterns.
In 7th Int’l Conference on Knowledge Discovery
and Data Mining, August 2000.

[3] Jay Ayres, J. E. Gehrke, Tomi Yiu, and Jason
Flannick. Sequential pattern mining using
bitmaps. In SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining, July 2002.

[4] R. J. Bayardo. Efficiently mining long patterns
from databases. In ACM SIGMOD Conf.
Management of Data, June 1998.

[5] S. Brin, R. Motwani, J. Ullman, and S. Tsur.
Dynamic itemset counting and implication rules
for market basket data. In ACM SIGMOD Conf.

Management of Data, May 1997.

[6] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA:
a maximal frequent itemset algorithm for
transactional databases. In Intl. Conf. on Data
Engineering, April 2001.

[7] B. Dunkel and N. Soparkar. Data organization
and access for efficient data mining. In 15th IEEE

1We extend our thanks to Jiawei Han amd Jian Pei.

Intl. Conf. on Data Engineering, March 1999.

[8] K. Gouda and M. J. Zaki. Efficiently mining
maximal frequent itemsets. In 1st IEEE Int’l
Conf. on Data Mining, November 2001.

[9] D. Gunopulos, H. Mannila, and S. Saluja.
Discovering all the most specific sentences by
randomized algorithms. In Intl. Conf. on Database

Theory, January 1997.

[10] J. Han and M. Kamber. Data Mining: Concepts

and Techniuqes. Morgan Kaufmann Publishers,
San Francisco, CA, 2001.

[11] J. Han, J. Pei, and Y. Yin. Mining frequent
patterns without candidate generation. In ACM
SIGMOD Conf. Management of Data, May 2000.

[12] D-I. Lin and Z. M. Kedem. Pincer-search: A new
algorithm for discovering the maximum frequent
set. In 6th Intl. Conf. Extending Database

Technology, March 1998.

[13] J-L. Lin and M. H. Dunham. Mining association
rules: Anti-skew algorithms. In 14th Intl. Conf.
on Data Engineering, February 1998.

[14] J. S. Park, M. Chen, and P. S. Yu. An effective
hash based algorithm for mining association rules.
In Intl. Conf. Management of Data, May 1995.

[15] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for
association rules. In 7th Intl. Conf. on Database

Theory, January 1999.

[16] J. Pei, J. Han, and R. Mao. Closet: An efficient
algorithm for mining frequent closed itemsets. In
SIGMOD Int’l Workshop on Data Mining and
Knowledge Discovery, May 2000.

[17] S. Sarawagi, S. Thomas, and R. Agrawal.
Integrating association rule mining with
databases: alternatives and implications. In ACM

Intl. Conf. Management of Data, June 1998.

[18] A. Savasere, E. Omiecinski, and S. Navathe. An
efficient algorithm for mining association rules in
large databases. In 21st VLDB Conf., 1995.

[19] J. Shafer, R. Agrawal, and M. Mehta. Sprint: A
scalable parallel classifier for data mining. In 22nd
VLDB Conference, March 1996.

[20] P. Shenoy, et al. Turbo-charging vertical mining of
large databases. In Intl. Conf. Management of
Data, May 2000.

[21] M. J. Zaki. Generating non-redundant association
rules. In Int’l Conf. Knowledge Discovery and
Data Mining, August 2000.

[22] M. J. Zaki. Scalable algorithms for association
mining. IEEE Transactions on Knowledge and

Data Engineering, 12(3):372-390, May-June 2000.

[23] M. J. Zaki and C.-J. Hsiao. ChARM: An efficient
algorithm for closed itemset mining. In 2nd SIAM
Int’l Conf. on Data Mining, April 2002.

[24] M. J. Zaki, S. Parthasarathy, M. Ogihara, and
W. Li. New algorithms for fast discovery of
association rules. In 3rd Intl. Conf. on Knowledge
Discovery and Data Mining, August 1997.

